Tuesday, February 26, 2008

REMAINIG PART OF CH-1

1.4 Definition of Design: (S ‘94)
Designing is such a vast field that it is defined in several ways. Various definitions of designing as pronounced by well-known designers are
“Design is that which defines solutions to problem which have previously been solved in a different way”
“Design is the conscious human process of planning physical things that display a new form in response to some pre-determined need”.
“Design is an act of collecting all pertinent information for the production of goods and services to meet some human need”.
The design of any component includes two things,
(i) Product design
(ii) Process design
The product design involves the development of specification for a product that will be functionally sound, good in appearance, and will give satisfactory performance for an adequate life.
The process design involves developing methods of manufacture of the products so that the component can be produced at a reasonably low cost.

1.5 History of Design Process
(i) Design by Single Person
(ii) Over-the-wall design
(iii) Simultaneous Engineering
(iv) Concurrent Engineering
(v) Integrated design and Manufacture.
In olden times one person could design and manufacture an entire product. Even for a large project such as the design of a ship or a bridge, one person had sufficient knowledge of the Physics, Materials and manufacturing processes to manage all aspects of the design and construction of the project. This period is referred to as the period of design by single person in the history of design.


By the middle of the 20th century products and manufacturing processes became so complex that, one person could not handle all aspects of design and manufacturing. This situation led to over-the-wall design process.
In this method each functional departments were separated from others, as shown by wall. There was only one-way communications between Customer, Marketing, Engg. Design and production department. The customers ‘throw’ their needs to marketing department. The marketing department may throw the customer needs to the design department, in many instances, orally. The Engg. Design department may conceive a design and hands it over to the manufacturing sections. The manufacturing department interprets that design and makes the product according to what they think suitable. Unfortunately, often what is manufactured by a company using over-the-wall process is not what the customers had in mind. This is due to lack of interaction between the different departments. Thus, this single direction over-the-wall approach is inefficient and costly and may result in poor quality products.
By the early 1980’s the concept of simultaneous engineering emerged. This philosophy emphasized simultaneous development of the manufacturing process- the goal was the simultaneous development of the product and the manufacturing process. This was accomplished by assigning manufacturing representatives to be members of design team, so that they could interact with the design engineers throughout the designs process.
In the 1980’s the simultaneous design philosophy was broadened and called concurrent engineering. A short definition of concurrent engineering is the simultaneous progression of all aspects, at all stages of product development, product specification, design, process and equipment etc. In concurrent engineering the primary focus is on the integration of teams of people having a stake in the product, design tools, and techniques and information about the product and the processes used to develop and manufacture it. Tools and techniques connect the teams with the information. Although many of the tools are computer-based, much design work is still done with pencil and paper. In fact, concurrent engineering is 80% company culture and 20% computer support.
With the advent of computer technology, drastic changes have taken place in the field of design and manufacturing. The result was a completely integrated design and manufacturing system. This system makes a good use of technologies such as CAD/CAM, FMS etc. The computer integrated manufacturing systems (CIMS) moves towards the ‘Factory of the future’. CIMS is necessary for better quality, efficiency and productivity.

CHAPTER 1 DEFINITION OF ENGINEERING DESIGN

Introduction:
The economic future of India depends on our ability to design, make and sell competitive products. Excellent design and effective manufacture are the pre-requisites of a successive industry. There is a general impression that the quality of Indian products can still be improved. The fact that consumers have lost their confidence on Indian-made products cannot be denied. This problem can be solved only by designing and manufacturing better products through improved methodology. Keeping this in view, the subject “Design and manufacturing” purpose to present the methods and procedures of design and manufacture.
Although engineers are not the only people who design things, the professional practice of engineering is largely concerned with design. It is usually said that design is the essence of engineering.
The ability to design is both a science and an art. The science can be learned through procedures developed by eminent scholars. But the art can be learned only by doing desi

Types of Products
A product is the tangible end result of a manufacturing process and is meant for satisfying human needs. The product can be classified as follows: -
1. Convenience goods
These are less expensive and are clustered around shops and restaurants.
These can be purchased at consumer’s convenience.
E.g. Cigarette, Candy, Magazines etc.

2. Shopping goods
These are expensive and people buy it less frequently.
E.g. Jewellary garments etc.

3. Specialty goods
These are purchased, taking extra pain.
E.g. Rare objects like stamps.

4. Industrial goods.
These are items used in the production of other items.
Eg. Raw materials.
Another way of classifying products is into,
(a) Continuous Products, and
(b) Discrete products
The continuous products are those which are produced in a continuous fashion. For example, plates, sheets, tubes and bars etc are produced in very long lengths, and then these are cut into desired lengths.
On the other hand, discrete products are produced one after another, each in separate units.
On the basis of the output product, the Industry is usually named as continuous industry and discrete industry.

1.3 Requirements in a good product
1. Customer Satisfaction
2. Profit
How to achieve customer satisfaction?
-The product should function properly.
-It must have desired accuracy
-It must have desired reliability
-It must be easy to operate
-It must be serviceable
-It must make minimum space utilization
-It must withstand rough handling
-Pleasant appearances.
-Reasonable price.
How can it be profitable?
-It must be easy to manufacture
-The raw material must be cheap and easily available
-The manufacturing process has to the decided on the basis of quantity to be produced
-It must use standard parts
-It must be easy to pack and distribute.

SYLLABUS OF FUNDAMENTALS OF DESIGN AND MANUFACTURING

Group A
Engineering design process and its structure. Identification and analysis of need, product design specifications, standards of performance and constraints.

Searching for design concepts; morphological analysis, brainstorming. Evaluation of design concepts for physical reliability, economic feasibility and utility.

Detailed design; design for manufacture, assembly, shipping, maintenance, use, and recyclability.

Design checks for clarity, simplicity, modularity and safety. Standardization and size ranges.

Reliability and robust design. Design organisation and communication, . technical reports, drawings, presentations and models.

Concept of manufacturing; classification of manufacturing processes. Fundamentals of casting. Basic understanding of commonly used casting processes (sand casting, investment casting and permanent mould casting processes).

Fundamentals of metal forming; hot and cold working; basic understanding of primary metal forming processes (rolling, forging, extrusion and drawing processes, punching and blanking).

Fundamentals of metal cutting; tool-work interaction for production of machined surfaces. Classification of machining processes. Basic machining operations (turning, shaping, planning, drilling and milling processes).

Group B

Fundamentals of grinding and finishing; overview of unconventional machining processes; fundamentals of welding processes; introduction to primary welding and allied processes; selection of manufacturing processes. Design for manufacturability.

Need for integration-commercial, economic and technological perspective; basic tools of integration; concept of a system. introduction to information technology and its elements.
Introduction to group technology; introduction to simulation and database management systems.

Elements of integration:-eontrol1ers, sensors, robots, automated machines; AGVs, AS, RS, etc.

Product and process design- for integration; design for economic manufacturing; design for manufacturing integration.

Introduction to computer aided process planning; selection of machine tools.
Group B
Heat treatment . Iron-carbon system. Annealing, normalising, hardening,. critical cooling rate, hardenability, age hardening, surface hardening, tempering.

Thermal properties . High temperature materials; materials for cryogenic application, thermally insulating materials. (Specific heat, thermal conductivity, thermal expansion).

Ceramic materials and polymers . Silicon structures, polymerism . in glass, electrical properties of ceramic phases, rocks, building stones, refractories.

Polymerisation mechanism , structural properties of polymer, thermoplastics, thermosets, elastomer, resins, composites, particles and fibre reinforced composite. Composite material including nano material.

Electronic properties . Magnetism, diamagnetism, paramagnetism, ferromagnetism, magnetic energy, zone theory of solids, zones in conductors and insulators.

Syllabus of Material Science And Engineering

Group A
Introduction to materials . Metal and alloys, ceramics, polymers and semi conducting materials-introduction and application as engineering materials.

Defects in solids . Point, line and surface defects. Diffusion in solids.

Phase diagrams . Mono-component and binary systems, non-equilibrium system, phase diagram and. application in crystalline and non-crystalline solids.

Mechanical properties . Tensile strength, yield strength, elastic and viscoelastic properties, creep, stress relaxation and impact. Fracture behaviour. Ductile fracture, Griffith theory, effect of heat treatment and temperature on properties of metals.

Deformation of metals. Elastic and plastic deformation, slip, twin, dislocation theory, critical resolved shear stress, deformation in polycrystalline materials; season cracking, Bachinger's effect, strengthening mechanics; work hardening recovery, crystallization and grain growth, cold and hot working. .

remainig part of chapter-17

Dielectric Materials
Capacitors require dielectrics of high e that can function at high frequencies (small relaxation times). Many of the ceramics have these properties, like mica, glass, and porcelain). Polymers usually have lower .

Ferroelectricity
Ferroelectric materials are ceramics that exhibit permanent polarization in the absence of an electric field. This is due to the asymmetric location of positive and negative charges within the unit cell. Two possible arrangements of this asymmetry results in two distinct polarizations, which can be used to code "0" and "1" in ferroelectric memories. A typical ferroelectric is barium titanate, BaTiO3, where the Ti4+ is in the center of the unit cell and four O2- in the central plane can be displaced to one side or the other of this central ion

Piezoelectricity
In a piezolectric material, like quartz, an applied mechanical stress causes electric polarization by the relative displacement of anions and cations.

remainig part of chapter 17

Conduction in Ionic Materials
In ionic materials, the band gap is too large for thermal electron promotion. Cation vacancies allow ionic motion in the direction of an applied electric field, this is referred to as ionic conduction. High temperatures produce more vacancies and higher ionic conductivity.
At low temperatures, electrical conduction in insulators is usually along the surface, due to the deposition of moisture that contains impurity ions.

Electrical Properties of Polymers
Polymers are usually good insulators but can be made to conduct by doping. Teflon is an exceptionally good insulator.
Dielectric Behavior
A dielectric is an electrical insulator that can be made to exhibit an electric dipole structure (displace the negative and positive charge so that their center of gravity is different).

Capacitance
When two parallel plates of area A, separated by a small distance l, are charged by +Q, –Q, an electric field develops between the plates
E = D/ee0
where D = Q/A. e0 is called the vacuum permittivity and e the relative permittivity, or dielectric constant (e = 1 for vacuum). In terms of the voltage between the plates, V = E l,
V = Dl/ee0 = Q l/Aee0 = Q / C
The constant C= Aee0/l is called the capacitance of the plates.

Field Vectors and Polarization
The dipole moment of a pair of positive and negative charges (+q and –q) separated at a distance d is p = qd. If an electric field is applied, the dipole tends to align so that the positive charge points in the field direction. Dipoles between the plates of a capacitor will produce an electric field that opposes the applied field. For a given applied voltage V, there will be an increase in the charge in the plates by an amount Q' so that the total charge becomes Q = Q' + Q0, where Q0 is the charge of a vacuum capacitor with the same V. With Q' = PA, the charge density becomes D = D0 E + P, where the polarization P = e0 (e–1) E .

Types of Polarization
Three types of polarization can be caused by an electric field:
Electronic polarization: the electrons in atoms are displaced relative to the nucleus.
Ionic polarization: cations and anions in an ionic crystal are displaced with respect to each other.
Orientation polarization: permanent dipoles (like H2O) are aligned.

Frequency Dependence of the Dielectric Constant
Electrons have much smaller mass than ions, so they respond more rapidly to a changing electric field. For electric field that oscillates at very high frequencies (such as light) only electronic polarization can occur. At smaller frequencies, the relative displacement of positive and negative ions can occur. Orientation of permanent dipoles, which require the rotation of a molecule can occur only if the oscillation is relatively slow (MHz range or slower). The time needed by the specific polarization to occur is called the relaxation time.

Dielectric Strength
Very high electric fields (>108 V/m) can free electrons from atoms, and accelerate them to such high energies that they can, in turn, free other electrons, in an avalanche process (or electrical discharge). This is called dielectric breakdown, and the field necessary to start the is called the dielectric strength or breakdown strength.

remainig part of chapter 17

Electrical Characteristics of Commercial Alloys
The best material for electrical conduction (lower resistivity) is silver. Since it is very expensive, copper is preferred, at an only modest increase in r. To achieve low r it is necessary to remove gases occluded in the metal during fabrication. Copper is soft so, for applications where mechanical strength is important, the alloy CuBe is used, which has a nearly as good r. When weight is important one uses Al, which is half as good as Cu. Al is also more resistant to corrosion.
When high resistivity materials are needed, like in electrical heaters, especially those that operate at high temperature, nichrome (NiCr) or graphite are used.

Intrinsic Semiconduction
Semiconductors can be intrinsic or extrinsic. Intrinsic means that electrical conductivity does not depend on impurities, thus intrinsic means pure. In extrinsic semiconductors the conductivity depends on the concentration of impurities.
Conduction is by electrons and holes. In an electric field, electrons and holes move in opposite direction because they have opposite charges. The conductivity of an intrinsic semiconductor is:
s = n e me + p e mh
where p is the hole concentration and mh the hole mobility. One finds that electrons move much faster than holes:
me > mh
In an intrinsic semiconductor, a hole is produced by the promotion of each electron to the conduction band. Thus:
n = p
Thus, s = 2 n e (me + mh) (only for intrinsic semiconductors).

Extrinsic Semiconduction
Unlike intrinsic semiconductors, an extrinsic semiconductor may have different concentrations of holes and electrons. It is called p-type if p>n and n-type if n>p. They are made by doping, the addition of a very small concentration of impurity atoms. Two common methods of doping are diffusion and ion implantation.
Excess electron carriers are produced by substitutional impurities that have more valence electron per atom than the semiconductor matrix. For instance phosphorous, with 5 valence electrons, is an electron donor in Si since only 4 electrons are used to bond to the Si lattice when it substitutes for a Si atom. Thus, elements in columns V and VI of the periodic table are donors for semiconductors in the IV column, Si and Ge. The energy level of the donor state is close to the conduction band, so that the electron is promoted (ionized) easily at room temperature, leaving a hole (the ionized donor) behind. Since this hole is unlike a hole in the matrix, it does not move easily by capturing electrons from adjacent atoms. This means that the conduction occurs mainly by the donated electrons (thus n-type).
Excess holes are produced by substitutional impurities that have fewer valence electrons per atom than the matrix. This is the case of elements of group II and III in column IV semiconductors, like B in Si. The bond with the neighbors is incomplete and so they can capture or accept electrons from adjacent silicon atoms. They are called acceptors. The energy level of the acceptor is close to the valence band, so that an electron may easily hop from the valence band to complete the bond leaving a hole behind. This means that conduction occurs mainly by the holes (thus p-type).

The Temperature Variation of Conductivity and Carrier Concentration
Temperature causes electrons to be promoted to the conduction band and from donor levels, or holes to acceptor levels. The dependence of conductivity on temperature is like other thermally activated processes:
s = A exp(–Eg/2kT)
where A is a constant (the mobility varies much more slowly with temperature). Plotting ln s vs. 1/T produces a straight line of slope Eg/2k from which the band gap energy can be determined. Extrinsic semiconductors have, in addition to this dependence, one due to the thermal promotion of electrons from donor levels or holes from acceptor levels. The dependence on temperature is also exponential but it eventually saturates at high temperatures where all the donors are emptied or all the acceptors are filled.
This means that at low temperatures, extrinsic semiconductors have larger conductivity than intrinsic semiconductors. At high temperatures, both the impurity levels and valence electrons are ionized, but since the impurities are very low in number and they are exhausted, eventually the behavior is dominated by the intrinsic type of conductivity.

Semiconductor Devices
A semiconductor diode is made by the intimate junction of a p-type and an n-type semiconductor (an n-p junction). Unlike a metal, the intensity of the electrical current that passes through the material depends on the polarity of the applied voltage. If the positive side of a battery is connected to the p-side, a situation called forward bias, a large amount of current can flow since holes and electrons are pushed into the junction region, where they recombine (annihilate). If the polarity of the voltage is flipped, the diode operates under reverse bias. Holes and electrons are removed from the region of the junction, which therefore becomes depleted of carriers and behaves like an insulator. For this reason, the current is very small under reverse bias. The asymmetric current-voltage characteristics of diodes is used to convert alternating current into direct current. This is called rectification.
A p-n-p junction transistor contains two diodes back-to-back. The central region is very thin and is called the base. A small voltage applied to the base has a large effect on the current passing through the transistor, and this can be used to amplify electrical signals (Fig. 19.22). Another common device is the MOSFET transistor where a gate serves the function of the base in a junction transistor. Control of the current through the transistor is by means of the electric field induced by the gate, which is isolated electrically by an oxide layer.

remainig part of chapter 17

Energy Band Structures in Solids
When atoms come together to form a solid, their valence electrons interact due to Coulomb forces, and they also feel the electric field produced by their own nucleus and that of the other atoms. In addition, two specific quantum mechanical effects happen. First, by Heisenberg's uncertainty principle, constraining the electrons to a small volume raises their energy, this is called promotion. The second effect, due to the Pauli exclusion principle, limits the number of electrons that can have the same property (which include the energy). As a result of all these effects, the valence electrons of atoms form wide valence bands when they form a solid. The bands are separated by gaps, where electrons cannot exist. The precise location of the bands and band gaps depends on the type of atom (e.g., Si vs. Al), the distance between atoms in the solid, and the atomic arrangement (e.g., carbon vs. diamond).
In semiconductors and insulators, the valence band is filled, and no more electrons can be added, following Pauli's principle. Electrical conduction requires that electrons be able to gain energy in an electric field; this is not possible in these materials because that would imply that the electrons are promoted into the forbidden band gap.
In metals, the electrons occupy states up to the Fermi level. Conduction occurs by promoting electrons into the conduction band, that starts at the Fermi level, separated by the valence band by an infinitesimal amount.

Conduction in Terms of Band and Atomic Bonding Models
Conduction in metals is by electrons in the conduction band. Conduction in insulators is by electrons in the conduction band and by holes in the valence band. Holes are vacant states in the valence band that are created when an electron is removed.
In metals there are empty states just above the Fermi levels, where electrons can be promoted. The promotion energy is negligibly small so that at any temperature electrons can be found in the conduction band. The number of electrons participating in electrical conduction is extremely small.
In insulators, there is an energy gap between the valence and conduction bands, so energy is needed to promote an electron to the conduction band. This energy may come from heat, or from energetic radiation, like light of sufficiently small wavelength.
A working definition for the difference between semiconductors and insulators is that in semiconductors, electrons can reach the conduction band at ordinary temperatures, where in insulators they cannot. The probability that an electron reaches the conduction band is about exp(-Eg/2kT) where Eg is the band gap and kT has the usual meaning. If this probability is, say, <> 55. At room temperature, 2kT = 0.05 eV; thus Eg > 2.8 eV can be used as the condition for an insulator.
Besides having relatively small Eg, semiconductors have covalent bond, whereas insulators usually are partially ionic bonded.

Electron Mobility
Electrons are accelerated in an electric field E, in the opposite direction to the field because of their negative charge. The force acting on the electron is -eE, where e is the electric charge. This force produces a constant acceleration so that, in the absence of obstacles (in vacuum, like inside a TV tube) the electron speeds up continuously in an electric field. In a solid, the situation is different. The electrons scatter by collisions with atoms and vacancies that change drastically their direction of motion. Thus electrons move randomly but with a net drift in the direction opposite to the electric field. The drift velocity is constant, equal to the electric field times a constant called the mobility m,
vd= – me E
which means that there is a friction force proportional to velocity. This friction translates into energy that goes into the lattice as heat. This is the way that electric heaters work.
The electrical conductivity is:
s = n e me
where n is the concentration of electrons (n is used to indicate that the carriers of electricity are negative particles).

Electrical Resistivity of Metals
The resistivity then depends on collisions. Quantum mechanics tells us that electrons behave like waves. One of the effects of this is that electrons do not scatter from a perfect lattice. They scatter by defects, which can be:
atoms displaced by lattice vibrations
vacancies and interstitials
dislocations, grain boundaries
impurities One can express the total resistivity rtot by the Matthiessen rule, as a sum of resistivities due to thermal vibrations, impurities and dislocations. illustrates how the resistivity increases with temperature, with deformation, and with alloying

Chapter 17. Electrical Properties

Electrical Conduction
Ohm’s Law
When an electric potential V is applied across a material, a current of magnitude I flows. In most metals, at low values of V, the current is proportional to V, according to Ohm's law:
I = V/R
where R is the electrical resistance. R depends on the intrinsic resistivity r of the material and on the geometry (length l and area A through which the current passes).
R = rl/A

Electrical Conductivity
The electrical conductivity is the inverse of the resistivity: s = 1/r.
The electric field in the material is E=V/l, Ohm's law can then be expressed in terms of the current density j = I/A as:
j = s E
The conductivity is one of the properties of materials that varies most widely, from 107 (W-m) typical of metals to 10-20 (W-m) for good electrical insulators. Semiconductors have conductivities in the range 10-6 to 104 (W-m).

Electronic and Ionic Conduction
In metals, the current is carried by electrons, and hence the name electronic conduction. In ionic crystals, the charge carriers are ions, thus the name ionic conduction

Chapter 16. Composites

16.1 Introduction
The idea is that by combining two or more distinct materials one can engineer a new material with the desired combination of properties (e.g., light, strong, corrosion resistant). The idea that a better combination of properties can be achieved is called the principle of combined action.
New - High-tech materials, engineered to specific applications
Old - brick-straw composites, paper, known for > 5000 years.
A type of composite that has been discussed is perlitic steel, which combines hard, brittle cementite with soft, ductile ferrite to get a superior material.
Natural composites: wood (polymer-polymer), bones (polymer-ceramics).
Usual composites have just two phases:
matrix (continuous)
dispersed phase (particulates, fibers)
Properties of composites depend on
properties of phases
geometry of dispersed phase (particle size, distribution, orientation)
amount of phase
Classification of composites: three main categories:
particle-reinforced (large-particle and dispersion-strengthened)
fiber-reinforced (continuous (aligned) and short fibers (aligned or random)
structural (laminates and sandwich panels)
Particle-reinforced composites
These are the cheapest and most widely used. They fall in two categories depending on the size of the particles:
large-particle composites, which act by restraining the movement of the matrix, if well bonded.
dispersion-strengthened composites, containing 10-100 nm particles, similar to what was discussed under precipitation hardening. The matrix bears the major portion of the applied load and the small particles hinder dislocation motion, limiting plastic deformation.

16.2 Large-Particle Composites
Properties are a combination of those of the components. The rule of mixtures predicts that an upper limit of the elastic modulus of the composite is given in terms of the elastic moduli of the matrix (Em) and the particulate (Ep) phases by:
Ec = EmVm + EpVp
where Vm and Vp are the volume fraction of the two phases. A lower bound is given by:
Ec = EmEp / (EpVm + EmVp)
modulus of composite of WC particles in Cu matrix vs. WC concentration.
Concrete
The most common large-particle composite is concrete, made of a cement matrix that bonds particles of different size (gravel and sand.) Cement was already known to the Egyptians and the Greek. Romans made cement by mixing lime (CaO) with volcanic ice.
In its general from, cement is a fine mixture of lime, alumina, silica, and water. Portland cement is a fine powder of chalk, clay and lime-bearing minerals fired to 1500o C (calcinated). It forms a paste when dissolved in water. It sets into a solid in minutes and hardens slowly (takes 4 months for full strength). Properties depend on how well it is mixed, and the amount of water: too little - incomplete bonding, too much - excessive porosity.
The advantage of cement is that it can be poured in place, it hardens at room temperature and even under water, and it is very cheap. The disadvantages are that it is weak and brittle, and that water in the pores can produce crack when it freezes in cold weather.
Concrete is cement strengthened by adding particulates. The use of different size (stone and sand) allows better packing factor than when using particles of similar size.
Concrete is improved by making the pores smaller (using finer powder, adding polymeric lubricants, and applying pressure during hardening.
Reinforced concrete is obtained by adding steel rods, wires, mesh. Steel has the advantage of a similar thermal expansion coefficient, so there is reduced danger of cracking due to thermal stresses. Pre-stressed concrete is obtained by applying tensile stress to the steel rods while the cement is setting and hardening. When the tensile stress is removed, the concrete is left under compressive stress, enabling it to sustain tensile loads without fracturing. Pre-stressed concrete shapes are usually prefabricated. A common use is in railroad or highway bridges.
Cermets
are composites of ceramic particles (strong, brittle) in a metal matrix (soft, ductile) that enhances toughness. For instance, tungsten carbide or titanium carbide ceramics in Co or Ni. They are used for cutting tools for hardened steels.
Reinforced rubber
is obtained by strengthening with 20-50 nm carbon-black particles. Used in auto tires.

16.3 Dispersion-Strengthened Composites
Use of very hard, small particles to strengthen metals and metal alloys. The effect is like precipitation hardening but not so strong. Particles like oxides do not react so the strengthening action is retained at high temperatures.
Fiber-reinforced composites
In many applications, like in aircraft parts, there is a need for high strength per unit weight (specific strength). This can be achieved by composites consisting of a low-density (and soft) matrix reinforced with stiff fibers.
The strength depends on the fiber length and its orientation with respect to the stress direction.
The efficiency of load transfer between matrix and fiber depends on the interfacial bond.

16.4 Influence of Fiber Length
Normally the matrix has a much lower modulus than the fiber so it strains more. This occurs at a distance from the fiber. Right next to the fiber, the strain is limited by the fiber. Thus, for a composite under tension, a shear stress appears in the matrix that pulls from the fiber. The pull is uniform over the area of the fiber. This makes the force on the fiber be minimum at the ends and maximum in the middle, like in the tug-of-war game.
To achieve effective strengthening and stiffening, the fibers must be larger than a critical length lc, defined as the minimum length at which the center of the fiber reaches the ultimate (tensile) strength sf, when the matrix achieves the maximum shear strength tm:
lc = sf d /2 tm
Since it is proportional to the diameter of the fiber d, a more unified condition for effective strengthening is that the aspect ratio of the fiber is l/d > sf /2 tm.
16.5 Influence of Fiber Orientation
The composite is stronger along the direction of orientation of the fibers and weakest in a direction perpendicular to the fiber. For discontinuous, random fibers, the properties are isotropic.

16.6 Polymer Matrix Composites
Largest and most diverse use of composites due to ease of fabrication, low cost and good properties.
Glass-fiber reinforced composites (GFRC) are strong, corrosion resistant and lightweight, but not very stiff and cannot be used at high temperatures. Applications include auto and boat bodies, aircraft components.
Carbon-fiber reinforced composites (CFRC) use carbon fibers, which have the highest specific module (module divided by weight). CFRC are strong, inert, allow high temperature use. Applications include fishing rods, golf clubs, aircraft components.
Kevlar, and aremid-fiber composite can be used as textile fibers. Applications include bullet-proof vests, tires, brake and clutch linings.
Wood:
This is one of the oldest and the most widely used structural material. It is a composite of strong and flexible cellulose fibers (linear polymer) surrounded and held together by a matrix of lignin and other polymers. The properties are anisotropic and vary widely among types of wood. Wood is ten times stronger in the axial direction than in the radial or tangential directions.