9.13 The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram
This is one of the most important alloys for structural applications. The diagram Fe—C is simplified at low carbon concentrations by assuming it is the Fe—Fe3C diagram. Concentrations are usually given in weight percent. The possible phases are:
a-ferrite (BCC) Fe-C solution
g-austenite (FCC) Fe-C solution
d-ferrite (BCC) Fe-C solution
liquid Fe-C solution
Fe3C (iron carbide) or cementite. An intermetallic compound.
The maximum solubility of C in a- ferrite is 0.022 wt%. d-ferrite is only stable at high temperatures. It is not important in practice. Austenite has a maximum C concentration of 2.14 wt %. It is not stable below the eutectic temperature (727 C) unless cooled rapidly (Chapter 10). Cementite is in reality metastable, decomposing into a-Fe and C when heated for several years between 650 and 770 C.
For their role in mechanical properties of the alloy, it is important to note that:
Ferrite is soft and ductile
Cementite is hard and brittle
Thus, combining these two phases in solution an alloy can be obtained with intermediate properties. (Mechanical properties also depend on the microstructure, that is, how ferrite and cementite are mixed.)
9.14 Development of Microstructures in Iron—Carbon Alloys
The eutectoid composition of austenite is 0.76 wt %. When it cools slowly it forms perlite, a lamellar or layered structure of two phases: a-ferrite and cementite (Fe3C).
Hypoeutectoid alloys contain proeutectoid ferrite plus the eutectoid perlite. Hypereutectoid alloys contain proeutectoid cementite plus perlite.
Since reactions below the eutectoid temperature are in the solid phase, the equilibrium is not achieved by usual cooling from austenite. The new microstructures that form are discussed in Ch. 10.
9.15 The Influence of Other Alloying Elements
As mentioned in section 7.9, alloying strengthens metals by hindering the motion of dislocations. Thus, the strength of Fe–C alloys increase with C content and also with the addition of other elements.
Saturday, February 16, 2008
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment